A*STAR Showcases 15 Innovative Solutions for Safety and Productivity at Singapore Airshow

Singapore (PRWEB UK) 15 February 2012

This is yet another good example of how A*STARs R&D capabilities, in partnership with companies, can bring economic value to Singapore. These technologies will be showcased at the Singapore Airshow from 14-19 February at Changi Exhibition Centre, Booth D35.

 

Showcased by A*STARs seven science and engineering research institutes, the advanced technologies are categorised into four key areas: airframe; maintenance, repair and overhaul (MRO); electronics and communications and aviation logistics.

 

Among the A*STAR innovations are:

 

A) Airframe

 

Creating Deep Bonds – A fast curing technology for aerospace sealants and adhesives.

Existing sealants used to repair fuel leaks, install windshields and windows to seal out moisture in aircraft typically takes a few days to fully cure at normal room temperature. Short wave infrared (IR) radiation penetrates deeply into materials and ensures a more uniform curing through heating. IR radiation is currently used in devices such as heat scanners and sensors. The new and simple curing process, which does not compromise the integrity of the sealants, takes only one to two hours instead of seven days to complete. This means that it uses only 3-5% of the normal time taken by current aerospace industry curing processes, translating into increased productivity and operational efficiency, and could result in significant cost savings.

 

Waves of Change Modelling of electromagnetic interactions in an aircraft

The ever-increasing demand for communication, navigation, and entertainment leads to heavy adoption of high-speed electronic devices and wireless networks inside the airplane. While wireless communication removes the weight of connecting cables and reduces maintenance fees, it worsens the electromagnetic environment inside the aircraft. Because of this it has become increasingly important to simulate and analyse electromagnetic interactions inside the airplanes closed environment for reliable aircraft operational functions. The A*STAR-developed advanced simulation technology accurately models the electromagnetic interactions in a closed environment.

 

B) Maintenance, Repair, Overhaul (MRO)

 

Get in Shape Fast Advanced metal forming technology of high performance materials

Conventional high performance materials such as chromoly steel, nickel-based alloy and titanium alloys are used for aerospace engine components. The fabrication cost of these materials is high as these tough materials are difficult to form into components of various complex shapes. A novel yet flexible forming technology is being developed to bend and form high-performance materials and thin-walled components of light-weight materials without secondary process, saving time and material cost by 14% and 40% respectively.

 

Repair With A New Shine Applications of Laser Aided Additive Manufacturing for Repair of Engine Components

 

Laser Aided Additive Manufacturing (LAAM) technology can be used to accurately repair damaged parts and directly manufacture nickel-base and titanium-base superalloy 3D components. These tough materials are difficult to repair due to cracking, oxidation and the need to maintain grain size and micro structure integrity. Due to the low heat input and high automation level, LAAM technology has shown its significant advantages over traditional repair processes such as Tungsten Inert Gas (TIG) welding and thermal spraying. Traditional repair processes cause distortion and peel-off arising from low bonding strength. LAAM technology yields several productivity improvements. Manpower training takes only two weeks compared to a minimum of half a year before an operator is qualified and experienced for repair work. The deposition rate with localised heating also increases. Current TIG method requires four days to achieve consistent quality for a part compared to 20 minutes. Less material is removed, saving machining time. Current TIG cladding requires about 54% material removal compared to 20% for LAAM.

 

Making Good Sense Health monitoring and diagnosis

 

A contactless health and diagnostics check is used for detection of early corrosion surface cracks (including length, width and depth) of less than 1mm and defect detection in composite parts against disbond, de-lamination impact damage. With the rapid scan rates of 0.06m/min 1.2m/min, non-visible surface cracks can be detected reliably and accurately, minimising potential downtime and improving operational efficiency. Unlike the current ultrasonic methods, this monitoring and diagnostic system is able to detect cracks under paint and thin non-conductive coatings. It does not require a medium to transmit signals into the materials under test.

 

C) Electronics and Communications

 

Solutions for flight circuit boards and robust memory system

 

Hot Stuff Integrated circuits for operation up to 300C

Many industries such as oil exploration, aerospace and automotive require electronic circuitry that operates at high temperatures.To address these upcoming needs, A*STARs Institute of Microelectronics (IME) Rugged Electronics Programme develops sensor interface electronics that can reliably measure various physical parameters at soaring temperatures of up to 300


About The Author

Ibrar Ayyub

I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.

Follow Us:
LinkedinTwitter

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top