You Are Here: Home » Blog » How It Works » How Computer Clothing Works

How Computer Clothing Works

In the next few years, we might be filling our closets with smart shirts that can read our heart rate and breathing, and musical jackets with built in all-fabric keypads. Thin light-emitting diode (LED) monitors could even be integrated into this apparel to display text and images. Computerized clothes will be the next step in making computers and devices portable without having to strap electronics to our bodies or fill our pockets with a plethora of gadgets. These new digital clothes aren’t necessarily designed to replace your PC, but they will be able to perform some of the same functions.

computer clothing

Computerized clothes are the ultimate in portable high-tech gadgetry. In this edition of How Stuff WILL Work, you will learn just what these clothes are made of, who is making them and what kind of products we might be wearing in the coming decade.

Weaving the Digital Fabric

As with all clothes, computerized apparel starts with the proper thread. Cotton, polyester or rayon don’t have the needed properties to carry the electrical current needed for digital clothing. However, metallic yarns aren’t new to the clothing industry. We have seen these metallic fabrics worn to make fashion statements for years. Researchers at MIT’s Media Lab are using silk organza, a unique fabric that has been used to make clothes in India for at least a century.

Silk organza is ideal for computerized clothing because it is made with two fibers that make it conducive to electricity. The first fiber is just an ordinary silk thread, but running in the opposite direction of the fiber is silk thread that is wrapped in a thin copper foil. It’s this copper foil that gives silk organza the ability to conduct electricity. Copper is a very good conductor of electricity and some microprocessor manufacturers are beginning to use copper to speed up microprocessors.

The metallic yarn is prepared just like cloth-core telephone wire, according to the MIT researchers. If you cut open a coiled telephone cable, there’s usually a conductor that is made out of a sheet of copper wrapped round a core of nylon or polyester threads. Because metallic yarn can withstand high temperatures, the yarn can be sewn or embroidered using industrial machinery. This property makes it very promising for mass producing computerized clothing.

Not only is silk organza a good electrical conductor, but it’s fiber’s are spaced with the right amount of space, so that the fibers can be individually addressed. A strip of the fabric would basically function like a ribbon cable. Ribbon cables are used in computers to connect disk drives to controllers. One problem with using silk organza would result if the circuits were to touch each other, therefore MIT scientists use an insulating material to coat or support the fabric.

Once the fabric is cut into a desirable shape, other components need to be attached to the fabric, like resistors, capacitors and coils. These components are sewn directly to the fabric. Additional components, such as LEDs, crystals, piezo transducers and other surface mount components, if needed, are soldered directly onto the metallic yarn, which the developers say is an easy process. Other electronic devices, can be snapped into the fabric by using some kind of gripper snaps, which pierce the yarn to create an electrical contact. These devices can then be easily removed in order to clean the fabric.

At Georgia Tech, researchers have developed another kind of thread to make smart clothes. Their smart shirt, which we will look at in the next section, is made of plastic optical fibers and other specialty fibers woven into the fabric. These optical and electrical conductive fibers will allow the shirt to wirelessly communicate with other devices, transferring data from the sensors embedded in the shirt.

For more Detail: How Computer Clothing Works

Leave a Comment

You must be logged in to post a comment.

Read previous post:
keyboard and display even for women´s hands
HAMMOND 1553TT – keyboard and display even for women´s hands

Series Hammond 1553 handheld enclosures has sprawled out with smaller relations. Handheld enclosures of the 1553T series with a sufficient...

Scroll to top