How Night-vision Cameras Work

Today, night vision is most widely available in security cameras. Some work only at night, while others switch modes based on user input or ambient light. Surveillance rigs can run from $18 for a 0.5-lux low-light camera to $3,670 for a top-of-the-line thermal imaging model (lux measures the minimum light a camera needs to pick up an image, so lower = better) [source: Brickhouse].
Night-vision Cameras
Out-of-the-box night-vision photography cameras are rare. The Midnight Shot NV-1, a dual-mode, digital color/IR camera offered through ThinkGeek for $99.99-$149.99, was the only exception we could find in 2012. In most cases, photographers turn instead to IR film, IR lights and special filters, or hack their digital cameras to capture IR (more on that later). Night-vision adapters for photographic and video cameras offer a simpler approach, but will set you back a cool $6,840-$10,819. Thermal imaging cameras, such as the FLIR T series, break the bank at $8,450-$14,294.
Whatever your shopping selection, your camera will use one of two basic approaches to see in the dark: It will either amplify dim visible light, such as the ambient nightglow of the moon and stars, or gather electromagnetic radiation types that humans can’t perceive, such as infrared.
It makes sense that we would end up taking these two approaches; after all, that’s how Mother Nature does it.

Burning Bright in the Forests of the Night

Nature abounds with creatures capable of seeing a world hidden from us, a land of ultraviolet-patterned flowers, thermal signals and bright nights. Night-vision technologies borrow tricks from these nocturnal and deep-sea denizens, boosting extant light or peering into infrared realms.
When it comes to seeing in low light, the eyes have it, thanks to a slew of specialized adaptations, including larger eyeballs, bigger lenses and pupils that open extra-wide — all of which add up to more light entering the eye. Some dark dwellers’ retinas bristle with many more rods (highly light-sensitive cells) than cones (detail and color receptors). Others lack cones altogether or feature rods specially built to maximize light-gathering.
The retinas of cats, cows and other animals feature a kind of mirror called a tapetum lucidum. This reflector bounces light back through the light-sensing cells of the retina, increasing the “brightness” of the image by boosting the nerve signal to the brain. Some say that this is why cats often have creepy glowing eyes in photographs (but I’m pretty sure it’s actually because they’re gazing into your immortal soul).
Some animals perceive wavelengths of energy that human eyes cannot. People see the world trichromatically, building a color image by combining signals from three kinds of light sensors, each tuned to a different wavelength within the 390-750 nanometer band: short (blue), medium (green) and long (red), with signal receptions peaking at 445 nanometers, 535 nanometers and 565 nanometers, respectively.
Bees are also trichromats, but one of their light-sensing cell types is tuned to the ultraviolet spectrum (peaking at 360 nanometers) [source: Meyer]. Some flowers and pollens display stunning patterns in this range; it’s nature’s club stamp, viewable only under black light, and it grabs bees’ attention [sources: ASU; Deriso].
Rattlesnakes sport sensory pits capable of “seeing” radiation in the thermal infrared spectrum, which means they can spot a warm-blooded animal based on its body heat [source: NASA]. Predator, indeed.
When humans began developing night-vision technology, we adopted two of these approaches: light amplification, also called light intensification, and thermal infrared. We’ve also dabbled in near-infrared.
Humans radiate most strongly in the infrared in the 10-micrometer band, so thermal cameras typically operate in a range of around 3-30 micrometers [source: Morovision]. Within this wavelength bracket, warm objects — such as vehicle engines, fires or people — stand out against background heat, particularly at night — a fact the U.S. Army would soon take advantage of.

For more Detail: How Night-vision Cameras Work


About The Author

Ibrar Ayyub

I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.

Follow Us:
LinkedinTwitter

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top