You Are Here: Home » Blog » Electronics News Updates » Pull-up Resistors explained

Pull-up Resistors explained




What is a Pull-up Resistor

Let’s say you have an MCU with one pin configured as an input. If there is nothing connected to the pin and your program reads the state of the pin, will it be high (pulled to VCC) or low (pulled to ground)? It is difficult to tell. This phenomena is referred to as floating. To prevent this unknown state, a pull-up or pull-down resistor will ensure that the pin is in either a high or low state, while also using a low amount of current.

pull-up-resistors-explained

For simplicity, we will focus on pull-ups since they are more common than pull-downs. They operate using the same concepts, except the pull-up resistor is connected to the high voltage (this is usually 3.3V or 5V and is often refereed to as VCC) and the pull-down resistor is connected to ground.

Pull-ups are often used with buttons and switches.

With a pull-up resistor, the input pin will read a high state when the button is not pressed. In other words, a small amount of current is flowing between VCC and the input pin (not to ground), thus the input pin reads close to VCC. When the button is pressed, it connects the input pin directly to ground. The current flows through the resistor to ground, thus the input pin reads a low state. Keep in mind, if the resistor wasn’t there, your button would connect VCC to ground, which is very bad and is also known as a short.

So what value resistor should you choose?

The short and easy answer is that you want a resistor value on the order of 10kΩ for the pull-up.

For more detail: Pull-up Resistors explained

Leave a Comment

You must be logged in to post a comment.

Scroll to top