You Are Here: Home » AVR ATmega Projects » RFID Based Voting Machine

RFID Based Voting Machine




We know in offices, shopping malls and in many other places where only the person with authorization card is allowed to enter the room. These systems use RFID communication system. RFID is used in shopping malls to stop theft as the products are tagged with RFID chip and when a person leaves the building with the RFID chip an alarm is raised automatically. The RFID tag is designed as small as part of sand. The RFID authentication systems are easy to design and are cheap in cost. Some schools and colleges nowadays use RFID based attendance systems.

RFID Based Voting Machine

RFID Based Voting Machine using AVR Microcontroller

In this project we are going to design a voting machine which only counts authenticated votes. This is done by using RFID (Radio Frequency Identification) tags.  Here we are going to write a program for ATMEGA for allowing only authorized RFID tag holders to vote. (Also check this simple voting machine project)

Components Required

Hardware: ATMEGA32, power supply (5v), AVR-ISP PROGRAMMER, JHD_162ALCD (16x2LCD), 100uF capacitor (connected across power supply), button (five pieces), 10KΩ resistor (five pieces), 100nF capacitor (five pieces), LED (two pieces), EM-18(RFID reader module).




Software: Atmel studio 6.1, progisp or flash magic.

Circuit Diagram and ExplanationSchematic RFID Based Voting Machine

In circuit PORTA of ATMEGA32 is connected to data port of LCD. Here one should remember to disable the JTAG communication in PORTC to ATMEGA by changing the fuse bytes, if one wants to use the PORTC as a normal communication port. In 16×2 LCD there are 16 pins overall if there is a black light, if there is no back light there will be 14 pins. One can power or leave the back light pins. Now in the 14 pins there are 8 data pins (7-14 or D0-D7), 2 power supply pins (1&2 or VSS&VDD or gnd&+5v), 3rd pin for contrast control (VEE-controls how thick the characters should be shown), 3 control pins (RS&RW&E)

In the circuit, you can observe that I have only took two control pins, this give the flexibility of better understanding, the contrast bit and READ/WRITE are not often used so they can be shorted to ground. This puts LCD in highest contrast and read mode. We just need to control ENABLE and RS pins to send characters and data accordingly.

The connections which are done for LCD are given below:

PIN1 or VSS to ground

PIN2 or VDD or VCC to +5v power

PIN3 or VEE to ground (gives maximum contrast best for a beginner)

PIN4 or RS (Register Selection) to PD6 of uC

PIN5 or RW (Read/Write) to ground (puts LCD in read mode eases the communication for user)

PIN6 or E (Enable) to PD5 of uC

PIN7 or D0 to PA0 of uC

PIN8 or D1 to PA1 of uC

PIN9 or D2 to PA2 of uC

PIN10 or D3 to PA3 of uC

PIN11 or D4 to PA4 of uC

PIN12 or D5 to PA5 of uC

PIN13 or D6 to PA6 of uC

PIN14 or D7 to PA7 of uC

In the circuit, you can see we have used 8bit communication (D0-D7). However this is not a compulsory and we can use 4bit communication (D4-D7) but with 4 bit communication program becomes a bit complex, so I preferred 8 bit communication.

So from mere observation of above table we are connecting 10 pins of LCD to controller in which 8 pins are data pins and 2 pins for control.

Before moving ahead, we need to understand about the serial communication. The RFID module here sends data to the controller in serial. It has other mode of communication but for easy communication we are choosing RS232. The RS232 pin of module is connected to RXD pin of ATMEGA.

 For more detail: RFID Based Voting Machine

Leave a Comment

You must be logged in to post a comment.

Read previous post:
0-25V Digital Voltmeter using AVR Microcontroller
0-25V Digital Voltmeter using AVR Microcontroller

In this project we are going to design a 25V range digital voltmeter by using ATMEGA32A microcontroller. In ATMEGA, we...

Close
Scroll to top