Slew Rate—the op amp speed limit

Slewing behavior of op amps is often misunderstood. It’s a meaty topic so let’s sort it out.
The input circuitry of an op amp circuit generally has a very small voltage between the inputs—ideally zero, right? But a sudden change in the input signal temporarily drives the feedback loop out of balance creating a differential error voltage between the op amp inputs. This causes the output to race off to correct the error. The larger the error, the faster it goes… that is until the differential input voltage is large enough to drive the op amp into slewing.
Slew Rate  the op amp speed limit
If the input step is large enough, the accelerator is jammed to the floor. More input will not make the output move faster. Figure 1 shows why in a simple op amp circuit. With a constant input voltage to the closed-loop circuit there is zero voltage between the op amp inputs. The input stage is balanced and the current IS1 splits equally between the two input transistors. With a step function change in Vin, greater than 350mV for this circuit, all the IS1 current is steered to one side of the input transistor pair and that current charges (or discharges) the Miller compensation capacitor, C1. The output slew rate (SR) is the rate at which IS1 charges C1, equal to IS1/C1.
There are variations, of course. Op amps with slew-enhancement add circuitry to detect this overdriven condition and enlist additional current sources to charge C1 faster but they still have a limited slew rate. The positive and negative slew rates may not be perfectly matched. They are close to equal in this simple circuit but this can vary with different op amps. The voltage to slew an input stage (350mV for this design) varies from approximately 100mV to 1V or more, depending on the op amp.
 
For more detail: Slew Rate—the op amp speed limit
 


About The Author

Ibrar Ayyub

I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.

Follow Us:
LinkedinTwitter

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top