You Are Here: Home » Blog » Electronics News Updates » Compost Sensor

Compost Sensor




Compost Sensor

Introduction

This is a tutorial on building a Compost Temperature monitoring system. It details how to build a web connected wireless sensor network and shows one possible way it could be constructed.

A Medium level of knowledge and skills are required. Basic knowledge of soldering and breadboarding will be very useful. I will assume that you know enough Arduino code to understand what a Function is, how a Library is useful, and why Serial Communication is important. And you will need to know enough electronics to understand what I mean with terms like Voltage, Current, Resistance, etc. A (very) basic knowledge of how radio works would also be useful for understanding the concepts, but not essential for following along. This is not advanced by any means and I will attempt to always reference materials that will cover these concepts in greater detail.

This tutorial is not about building a polished final product. I am going to assume that you are accompanied by some basic fabrication skills and are capable of doing some problem solving in this area. I will show an example of my project at the end, but I will not be talking extensively on housing design or fabrication. This will be purely about the code and electronics to get up and running with the various communication types, sensors, and data storage. That being said, by the end of this tutorial you will have a web connected sensor network working on your breadboard. Putting it into a housing will be easy after that.

Why Measure the Temperature of Compost?

“Composting is the biological decomposition of organic matter under aerobic conditions.” Micro-organisms consume organic material and oxygen and create heat as a waste product. By measuring this heat you can predict decomposition rate, oxygen content (loosely), and the overall health and efficiency of your composting operation. It helps to predict when the pile needs to be turned to introduce more oxygen, when the pile is finished with its hot cook cycle, and if you have effectively killed any pathogens or weed seeds that might be present in the feed stocks. Monitoring is an important aspect to streamlining and creating a stable process and workflow to get a predictable and consistent result through each cook, improving the overall efficiency in the operation.

Technologies

This project uses short range Radio and Cellular communication to get sensor data from individual probes in the compost to an online database. The hardware will be built on the Arduino platform using the Moteino wireless boards. We will be using thermistors for our temperature sensing, an Adafruit FONA cellular module for our cellular communication and the Sparkfun Data Service for our online database.

Parts List

Note: You will need an ftdi board to upload code to the Moteino’s.

Sensor Node (per node):

For more detail: Compost Sensor

Leave a Comment

You must be logged in to post a comment.

Read previous post:
35VIN & VOUT battery charge controller delivers up to 20A
35VIN & VOUT battery charge controller delivers up to 20A

Features Multichemistry Li-Ion/Polymer, LiFePO4, or Lead- Acid Battery Charger with Termination High Efficiency Synchronous Buck Battery Charger Digital Telemetry System Monitors...

Close
Scroll to top