This is a little circuit that could be used to track an object up to 400m.
It is essentially an SAW stabilized OOK modulated RF transmitter. The modulation is done with two low frequency ultra low power oscillators that activate the transmitter every two seconds for a short period.
With the setup shown here I got up to 400m range. Current consumption is about 180uA average so it’ll work for a couple of days with the little button cell. Frequency 915MHz.
It is essentially an SAW stabilized OOK modulated RF transmitter. The modulation is done with two low frequency ultra low power oscillators that activate the transmitter every two seconds for a short period.
With the setup shown here I got up to 400m range. Current consumption is about 180uA average so it’ll work for a couple of days with the little button cell. Frequency 915MHz.
The first oscillator to the left activates the second to its right every 2 seconds or so. The second oscillates at about 800 to 900Hz. Its output signal modulates the RF transmitter which is essentially just a SAW based oscillator with some of the RF energy coupled to a whip antenna.
The adjustment of the RF oscillator can be tricky but works fine with the components shown here. The jumper resistor over the SAW element allows the frequency to be adjusted near the SAW fundamental frequency, then the jumper is removed and the circuit will oscillate at the SAW frequency.
The lower you go in frequency the easier this adjustment will be, so you could go for 433MHz for example too. The component to be changed would be the inductor then (about 22nH).
Use NPO caps for the RF area. The type of the inductor is not critical, I used ceramic.
The circuit would actually benefit from a buffer stage or a matched antenna output, but frankly I didn’t fell like investing more time in it. 🙂 If you want to experiment, I added a pic with a matching circuit for 433MHz that worked pretty well, The inductor for the oscillator changes to about 22nH in that case.
(If you click on the image twice and then on “original DIY file” just below the low resolution picture it will open in hi-res.)
The adjustment of the RF oscillator can be tricky but works fine with the components shown here. The jumper resistor over the SAW element allows the frequency to be adjusted near the SAW fundamental frequency, then the jumper is removed and the circuit will oscillate at the SAW frequency.
The lower you go in frequency the easier this adjustment will be, so you could go for 433MHz for example too. The component to be changed would be the inductor then (about 22nH).
Use NPO caps for the RF area. The type of the inductor is not critical, I used ceramic.
The circuit would actually benefit from a buffer stage or a matched antenna output, but frankly I didn’t fell like investing more time in it. 🙂 If you want to experiment, I added a pic with a matching circuit for 433MHz that worked pretty well, The inductor for the oscillator changes to about 22nH in that case.
(If you click on the image twice and then on “original DIY file” just below the low resolution picture it will open in hi-res.)
Building it requires a hotplate and solder paste or a soldering iron with a fine tip and steady hands.
Make your own PCB layout or download mine from here: Google drive link These are EAGLE files, Schematic and BOM are also included.
Upload the .brd file to your favourite cheap PCB manufacturer, I used Oshpark.com, will take two to three weeks and then:
1. Put solder paste on every pad a component will be placed on
2. Place all components
3. Heat the entire board on a hotplate and wait until the solder paste liquifies
4. Remove the board form the hotplate , let it cool down
5. Flip the board around and solder the battery holder on it
6. Solder the antenna wire into the hole
7. Important: Put some conformal coating or silicon etc on the component side. This will protect the circuit from contamination and humidity. The LF oscillators use pretty high resistance values, which means they are easily detuned if for example you put your finger on it.
Read more: Tiny UHF Tracker Transmitter
Make your own PCB layout or download mine from here: Google drive link These are EAGLE files, Schematic and BOM are also included.
Upload the .brd file to your favourite cheap PCB manufacturer, I used Oshpark.com, will take two to three weeks and then:
1. Put solder paste on every pad a component will be placed on
2. Place all components
3. Heat the entire board on a hotplate and wait until the solder paste liquifies
4. Remove the board form the hotplate , let it cool down
5. Flip the board around and solder the battery holder on it
6. Solder the antenna wire into the hole
7. Important: Put some conformal coating or silicon etc on the component side. This will protect the circuit from contamination and humidity. The LF oscillators use pretty high resistance values, which means they are easily detuned if for example you put your finger on it.
Read more: Tiny UHF Tracker Transmitter