Summary
The innovation of equipment for calamity detection and monitoring are quite rampant. It is because of consecutive aggression of storms and earthquakes in different parts of the world. As to observe the different scenarios, these are not merely natural causes, there are some or most of it is manmade. A good example of it is a storm, which is the combination of hot and cold air. These hot and cold airs are natural but the rapid change of air temperature is not natural. Aside from air, water is another major contributor to global warming. Abnormalities that happened to the body of water affect the entire ecosystem, which also affect both living and nonliving things. With such cases, the environment needs care from people. This simple design of ecosystem support and calamity detection will be a great help in protecting the nature and preventing major disasters from occurring. It features two sensing parameters such as pressure and pH level. It has Fast-mode Plus (Fm+) capability on its buses, which can be configured to communicate up to 64 slaves in one serial sequence with no intervention from the CPU. It can communicate remotely and locally where GSM is unavailable.
The design is comprised of SST89E52RC-33-C-PIE legacy microcontroller as the main processor of the device. It is interfaced with the PCA9661 parallel bus to 1 channel Fm+ I2C-bus controller with 74HC237D as the decoder. This interface provides the ports for the sensors, which it communicates at high speed data transfer. The two sensor attached to the I2C-bus controller are SEN-10972 pH sensor and MPL115A1T1 miniature I2C digital barometer. The SEN-10972 pH sensor is used to monitor the pH level of water in which a change of pH level signifies abnormalities or some toxic chemicals that are present in water. The MPL115A1T1 barometer is used to monitor the possibilities of a developing tropical storm or typhoon. The GSM module is for remote data communication with central station or any portable device that is GSM communication capable. In case of a local monitoring and GSM signal dead zone, a built in RF transmitter will trigger to transmit data to any portable device or stations within the range of RF transmission.
For more detail: High Speed Ecosystem Support and Calamity Monitoring System
The design is comprised of SST89E52RC-33-C-PIE legacy microcontroller as the main processor of the device. It is interfaced with the PCA9661 parallel bus to 1 channel Fm+ I2C-bus controller with 74HC237D as the decoder. This interface provides the ports for the sensors, which it communicates at high speed data transfer. The two sensor attached to the I2C-bus controller are SEN-10972 pH sensor and MPL115A1T1 miniature I2C digital barometer. The SEN-10972 pH sensor is used to monitor the pH level of water in which a change of pH level signifies abnormalities or some toxic chemicals that are present in water. The MPL115A1T1 barometer is used to monitor the possibilities of a developing tropical storm or typhoon. The GSM module is for remote data communication with central station or any portable device that is GSM communication capable. In case of a local monitoring and GSM signal dead zone, a built in RF transmitter will trigger to transmit data to any portable device or stations within the range of RF transmission.
For more detail: High Speed Ecosystem Support and Calamity Monitoring System