How to Select the Best Audio Amplifier for Your Design


An audio amplifier increases the amplitude of a small signal to a useful level, all the while maintaining the smaller signal’s detail. This is known as linearity. The greater the amplifier linearity, the more the output signal is a true representation of the input.
With the ever-changing performance requirements for amplifiers in the audio market, there have been many advances in audio amplifier topologies. Consequently, designers must know the types of audio amplifiers available and the characteristics associated with each. This is the only way to ensure that you select the best audio amp for an application. In this tutorial, we examine the most important characteristics of each class of audio amp available today: Class A, Class B, Class AB, Class D, Class G, Class DG, and Class H.

Class A Amplifiers

The simplest type of audio amplifiers is Class A. Class A amps have output transistors (Figure 1) that conduct (i.e., do not fully turn off), irrespective of the output signal waveform. Class A is the most linear type of audio amp, but it has low efficiency. Consequently, these amps are used in applications that require high linearity and have ample power available.
Audio Amplifier for Your Design

Class B Amplifiers

Class B amplifiers use a push-pull amplifier topology. The output of a Class B amp incorporates a positive and negative transistor. To replicate the input, each transistor only conducts during half (180°) of the signal waveform (Figure 2). This allows the amp to idle with zero current, thereby increasing efficiency compared to a Class A amp.
There is a trade-off that comes with a Class B amp: the increased efficiency degrades audio quality. This happens because there is a crossover point at which the two transistors transition from the on state to the off state. Class B audio amps are also known to have crossover distortion when handling low-level signals. They are not a good choice for low-power applications.

Class AB Amplifiers

A compromise between Class A and Class B amplifier topologies is the Class AB audio amp. A Class AB amp provides the sound quality of the Class A topology with the efficiency of Class B. This performance is achieved by biasing both transistors to conduct a near zero signal output, i.e., the point where Class B amps introduce nonlinearities (Figure 3). For small signals, both transistors are active, thus functioning like a Class A amp. For large-signal excursions, only one transistor is active for each half of the waveform, thereby operating like a Class B amp.
Class AB speaker amps offer high signal-to-noise (SNR), low THD+N, and typically up to 65% efficiency. This makes them ideal choices as high-fidelity speaker drivers. Class AB amps like the MAX98309 and the MAX98310 are used in portable media players, digital cameras, tablets, and e-readers where high fidelity is a must. Some headphone amplifiers use a Class AB topology in a bridge-tied-load configuration. As an example, the MAX97220A headphone amp offers exceptionally low THD+N throughout the audio band while delivering up to 125mW of power; the MAX97220A is one of the most widely used Class AB headphone amps in the world today. For other examples, see Maxim’s Class AB amps.

About The Author

Ibrar Ayyub

I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.

Follow Us:

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top