This article is in continuation of PWM generation using AVR timer. In the previous article, PWM generation using Phase correct PWM mode is described. However, there are some applications like DAC, power regulation and rectification etc. which require high frequency PWM wave. The PWM generation using Fast PWM mode is suitable for such applications. This article focuses on Fast PWM mode of AVR Timer.
The Fast PWM mode is based on single-slope operation. In single slope operation, the register TCNTn counts from bottom value to maximum value and its value resets to zero. The counting starts again from bottom. The register OCRn compares the value with the TCNTn register constantly. If the timer is configured in non-inverting mode, PWM output pin (OCn) goes low when the value of the above two registers matches. The OCn pin becomes high when the TCNTn register reaches at bottom value. In inverting mode OCn pin behaves opposite to non-inverting mode. For timer 0 fast PWM mode, following table shows the functionality of COM 0[1:0] bits.
Frequency of fast PWM mode signal is twice than Phase Correct PWM mode signal because of its single slope operation.
Output frequency of fast PWM signal = Crystal frequency÷(Prescaler ×256)
Objective: Compare output waveform of Phase correct PWM mode and Fast PWM generated signal.
For this objective Timer 0 is configured in Phase correct PWM and Timer 2 is configured in Fast PWM mode. The Duty cycle of signals is set to 50%.
Circuit description:
The connection of ATmega16 is shown in circuit diagram. Since, Timer0 and Timer2 are used to generate PWM wave then output will be taken on OC0(PB3) and OC2(PD7) pins respectively.
Programming steps:
The programming steps to configure Phase correct PWM mode is similar as used in previous article. The following steps are written to configure the Timer2 for Fast PWM mode:
1. Select Fast PWM mode by programming WGM2 [1:0] bit.
2. Program COM2[1:0] and select inverting or non-inverting mode.
I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish.ACCEPTPrivacy Policy
Manage consent
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may affect your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.