How Batteries Work

While there are many different types of batteries, the basic concept by which they function remains the same. When a device is connected to a battery, a reaction occurs that produces electrical energy. This is known as an electrochemical reaction. Italian physicist Count Alessandro Volta first discovered this process in 1799 when he created a simple battery from metal plates and brine-soaked cardboard or paper. Since then, scientists have greatly improved upon Volta’s original design to create batteries made from a variety of materials that come in a multitude of sizes.
Batteries Work
Today, batteries are all around us. They power our wristwatches for months at a time. They keep our alarm clocks and telephones working, even if the electricity goes out. They run our smoke detectors, electric razors, power drills, mp3 players, thermostats — and the list goes on. If you’re reading this article on your laptop or smartphone, you may even be using batteries right now! However, because these portable power packs are so prevalent, it’s very easy to take them for granted. This article will give you a greater appreciation for batteries by exploring their history, as well as the basic parts, reactions and processes that make them work. So cut that cord and click through our informative guide to charge up your knowledge of batteries.

Battery History

Batteries have been around longer than you may think. In 1938, archaeologist Wilhelm Konig discovered some peculiar clay pots while digging at Khujut Rabu, just outside of present-day Baghdad, Iraq. The jars, which measure approximately 5 inches (12.7 centimeters) long, contained an iron rod encased in copper and dated from about 200 B.C. Tests suggested that the vessels had once been filled with an acidic substance like vinegar or wine, leading Konig to believe that these vessels were ancient batteries. Since this discovery, scholars have produced replicas of the pots that are in fact capable of producing an electric charge. These “Baghdad batteries” may have been used for religious rituals, medicinal purposes, or even electroplating.
In 1799, Italian physicist Alessandro Volta created the first battery by stacking alternating layers of zinc, brine-soaked pasteboard or cloth, and silver. This arrangement, called a voltaic pile, was not the first device to create electricity, but it was the first to emit a steady, lasting current. However, there were some drawbacks to Volta’s invention. The height at which the layers could be stacked was limited because the weight of the pile would squeeze the brine out of the pasteboard or cloth. The metal discs also tended to corrode quickly, shortening the life of the battery. Despite these shortcomings, the SI unit of electromotive force is now called a volt in honor of Volta’s achievement.
The next breakthrough in battery technology came in 1836 when English chemist John Frederick Daniell invented the Daniell cell. In this early battery, a copper plate was placed at the bottom of a glass jar and a copper sulfate solution was poured over the plate to half-fill the jar. Then the zinc plate was hung in the jar, and a zinc sulfate solution was added. Because copper sulfate is denser than zinc sulfate, the zinc solution floated to the top of the copper solution and surrounded the zinc plate. The wire connected to the zinc plate represented the negative terminal, while the one leading from the copper plate was the positive terminal. Obviously, this arrangement would not have functioned well in a flashlight, but for stationary applications it worked just fine. In fact, the Daniell cell was a common way to power doorbells and telephones before electrical generation was perfected.
By 1898, the Colombia Dry Cell became the first commercially available battery sold in the United States. The manufacturer, National Carbon Company, later became the Eveready Battery Company, which produces the Energizer brand.

Anatomy of a Battery

Take a look at any battery, and you’ll notice that it has two terminals. One terminal is marked (+), or positive, while the other is marked (-), or negative. In normal flashlight batteries, like AA, C or D cell, the terminals are located on the ends. On a 9-volt or car battery, however, the terminals are situated next to each other on the top of the unit. If you connect a wire between the two terminals, the electrons will flow from the negative end to the positive end as fast as they can. This will quickly wear out the battery and can also be dangerous, particularly on larger batteries. To properly harness the electric charge produced by a battery, you must connect it to a load. The load might be something like a light bulb, a motor or an electronic circuit like a radio.
The internal workings of a battery are typically housed within a metal or plastic case. Inside this case are a cathode, which connects to the positive terminal, and an anode, which connects to the negative terminal. These components, more generally known as electrodes, occupy most of the space in a battery and are the place where the chemical reactions occur. A separator creates a barrier between the cathode and anode, preventing the electrodes from touching while allowing electrical charge to flow freely between them. The medium that allows the electric charge to flow between the cathode and anode is known as the electrolyte. Finally, the collector conducts the charge to the outside of the battery and through the load.
On the next page, we’ll explore how the cathode, anode, electrolyte, separator and collector work together to produce an electrical current and keep your portable devices going strong.

For more Detail: How Batteries Work


About The Author

Ibrar Ayyub

I am an experienced technical writer holding a Master's degree in computer science from BZU Multan, Pakistan University. With a background spanning various industries, particularly in home automation and engineering, I have honed my skills in crafting clear and concise content. Proficient in leveraging infographics and diagrams, I strive to simplify complex concepts for readers. My strength lies in thorough research and presenting information in a structured and logical format.

Follow Us:
LinkedinTwitter

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top