NEW GRAPHENE HALL EFFECT SENSOR TO IMPROVE ACCURACY AND PRECISION IN MAGNETIC MEASUREMENT APPLICATIONS

The Cambridge-based startup, Paragraf has collaborated with the Magnetic Measurement section at CERN to demonstrate the potential of graphene-based Hall effect sensors to improve accuracy in magnetic measurement applications. Overcoming the shortfalls of existing Hall effect sensors that exhibit planar Hall effects that produce false signals, Hall effect Sensor from Paragraf truly senses magnetic fields along one direction giving a negligible planar Hall effect. This is because the active sensing component of the Hall effect Sensor from Paragraf is made of atomically thin graphene which is two-dimensional. This enables the true perpendicular magnetic field value to be obtained, allowing for higher precision mapping of the local magnetic field.

Opening the door to a new mapping technique by mounting a stack of sensors on a rotating shaft, Hall effect sensors without planar effect indeed will be the preferable option. Measurements of the harmonic content in accelerator magnets almost point-like along the magnet axis would be the added advantage. Wide temperature range from +80°C down to cryogenic temperatures of 1.5 Kelvin is one of the key properties of the Paragraf Hall effect sensor.

Read more: NEW GRAPHENE HALL EFFECT SENSOR TO IMPROVE ACCURACY AND PRECISION IN MAGNETIC MEASUREMENT APPLICATIONS


About The Author

Muhammad Bilal

I am a highly skilled and motivated individual with a Master's degree in Computer Science. I have extensive experience in technical writing and a deep understanding of SEO practices.

Leave a Comment

Your email address will not be published. Required fields are marked *

Scroll to Top